Files
async_trait
bitflags
byteorder
bytes
cfg_if
enum_primitive
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
instant
libc
lock_api
log
memchr
mio
nix
num_cpus
num_traits
once_cell
parking_lot
parking_lot_core
pin_project_lite
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rs9p
scopeguard
signal_hook_registry
slab
smallvec
syn
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
sync
task
time
util
tokio_macros
tokio_stream
tokio_util
unicode_xid
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use crate::io::sys;
use crate::io::{AsyncRead, AsyncWrite, ReadBuf};

use std::cmp;
use std::future::Future;
use std::io;
use std::io::prelude::*;
use std::pin::Pin;
use std::task::Poll::*;
use std::task::{Context, Poll};

use self::State::*;

/// `T` should not implement _both_ Read and Write.
#[derive(Debug)]
pub(crate) struct Blocking<T> {
    inner: Option<T>,
    state: State<T>,
    /// `true` if the lower IO layer needs flushing
    need_flush: bool,
}

#[derive(Debug)]
pub(crate) struct Buf {
    buf: Vec<u8>,
    pos: usize,
}

pub(crate) const MAX_BUF: usize = 16 * 1024;

#[derive(Debug)]
enum State<T> {
    Idle(Option<Buf>),
    Busy(sys::Blocking<(io::Result<usize>, Buf, T)>),
}

cfg_io_std! {
    impl<T> Blocking<T> {
        pub(crate) fn new(inner: T) -> Blocking<T> {
            Blocking {
                inner: Some(inner),
                state: State::Idle(Some(Buf::with_capacity(0))),
                need_flush: false,
            }
        }
    }
}

impl<T> AsyncRead for Blocking<T>
where
    T: Read + Unpin + Send + 'static,
{
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        dst: &mut ReadBuf<'_>,
    ) -> Poll<io::Result<()>> {
        loop {
            match self.state {
                Idle(ref mut buf_cell) => {
                    let mut buf = buf_cell.take().unwrap();

                    if !buf.is_empty() {
                        buf.copy_to(dst);
                        *buf_cell = Some(buf);
                        return Ready(Ok(()));
                    }

                    buf.ensure_capacity_for(dst);
                    let mut inner = self.inner.take().unwrap();

                    self.state = Busy(sys::run(move || {
                        let res = buf.read_from(&mut inner);
                        (res, buf, inner)
                    }));
                }
                Busy(ref mut rx) => {
                    let (res, mut buf, inner) = ready!(Pin::new(rx).poll(cx))?;
                    self.inner = Some(inner);

                    match res {
                        Ok(_) => {
                            buf.copy_to(dst);
                            self.state = Idle(Some(buf));
                            return Ready(Ok(()));
                        }
                        Err(e) => {
                            assert!(buf.is_empty());

                            self.state = Idle(Some(buf));
                            return Ready(Err(e));
                        }
                    }
                }
            }
        }
    }
}

impl<T> AsyncWrite for Blocking<T>
where
    T: Write + Unpin + Send + 'static,
{
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        src: &[u8],
    ) -> Poll<io::Result<usize>> {
        loop {
            match self.state {
                Idle(ref mut buf_cell) => {
                    let mut buf = buf_cell.take().unwrap();

                    assert!(buf.is_empty());

                    let n = buf.copy_from(src);
                    let mut inner = self.inner.take().unwrap();

                    self.state = Busy(sys::run(move || {
                        let n = buf.len();
                        let res = buf.write_to(&mut inner).map(|_| n);

                        (res, buf, inner)
                    }));
                    self.need_flush = true;

                    return Ready(Ok(n));
                }
                Busy(ref mut rx) => {
                    let (res, buf, inner) = ready!(Pin::new(rx).poll(cx))?;
                    self.state = Idle(Some(buf));
                    self.inner = Some(inner);

                    // If error, return
                    res?;
                }
            }
        }
    }

    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
        loop {
            let need_flush = self.need_flush;
            match self.state {
                // The buffer is not used here
                Idle(ref mut buf_cell) => {
                    if need_flush {
                        let buf = buf_cell.take().unwrap();
                        let mut inner = self.inner.take().unwrap();

                        self.state = Busy(sys::run(move || {
                            let res = inner.flush().map(|_| 0);
                            (res, buf, inner)
                        }));

                        self.need_flush = false;
                    } else {
                        return Ready(Ok(()));
                    }
                }
                Busy(ref mut rx) => {
                    let (res, buf, inner) = ready!(Pin::new(rx).poll(cx))?;
                    self.state = Idle(Some(buf));
                    self.inner = Some(inner);

                    // If error, return
                    res?;
                }
            }
        }
    }

    fn poll_shutdown(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
        Poll::Ready(Ok(()))
    }
}

/// Repeats operations that are interrupted
macro_rules! uninterruptibly {
    ($e:expr) => {{
        loop {
            match $e {
                Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
                res => break res,
            }
        }
    }};
}

impl Buf {
    pub(crate) fn with_capacity(n: usize) -> Buf {
        Buf {
            buf: Vec::with_capacity(n),
            pos: 0,
        }
    }

    pub(crate) fn is_empty(&self) -> bool {
        self.len() == 0
    }

    pub(crate) fn len(&self) -> usize {
        self.buf.len() - self.pos
    }

    pub(crate) fn copy_to(&mut self, dst: &mut ReadBuf<'_>) -> usize {
        let n = cmp::min(self.len(), dst.remaining());
        dst.put_slice(&self.bytes()[..n]);
        self.pos += n;

        if self.pos == self.buf.len() {
            self.buf.truncate(0);
            self.pos = 0;
        }

        n
    }

    pub(crate) fn copy_from(&mut self, src: &[u8]) -> usize {
        assert!(self.is_empty());

        let n = cmp::min(src.len(), MAX_BUF);

        self.buf.extend_from_slice(&src[..n]);
        n
    }

    pub(crate) fn bytes(&self) -> &[u8] {
        &self.buf[self.pos..]
    }

    pub(crate) fn ensure_capacity_for(&mut self, bytes: &ReadBuf<'_>) {
        assert!(self.is_empty());

        let len = cmp::min(bytes.remaining(), MAX_BUF);

        if self.buf.len() < len {
            self.buf.reserve(len - self.buf.len());
        }

        unsafe {
            self.buf.set_len(len);
        }
    }

    pub(crate) fn read_from<T: Read>(&mut self, rd: &mut T) -> io::Result<usize> {
        let res = uninterruptibly!(rd.read(&mut self.buf));

        if let Ok(n) = res {
            self.buf.truncate(n);
        } else {
            self.buf.clear();
        }

        assert_eq!(self.pos, 0);

        res
    }

    pub(crate) fn write_to<T: Write>(&mut self, wr: &mut T) -> io::Result<()> {
        assert_eq!(self.pos, 0);

        // `write_all` already ignores interrupts
        let res = wr.write_all(&self.buf);
        self.buf.clear();
        res
    }
}

cfg_fs! {
    impl Buf {
        pub(crate) fn discard_read(&mut self) -> i64 {
            let ret = -(self.bytes().len() as i64);
            self.pos = 0;
            self.buf.truncate(0);
            ret
        }
    }
}